1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
   | 
  const fs = require("fs"); const path = require("path"); const { createWorker } = require("tesseract.js"); const { createCanvas, loadImage } = require("canvas");
 
 
 
  module.exports = class WordProcess {   resultFormat = /[\r\n\s]/g;   worker;
    
 
 
 
    init(modelCachePath, langs) {     modelCachePath = modelCachePath || path.resolve(__dirname, "./lang");     langs = langs || "chi_sim+eng";
      return new Promise((resolve, reject) => {       createWorker(langs, 1, {         cachePath: path.resolve(__dirname, modelCachePath),       })         .then((worker) => {           this.worker = worker;           resolve(this);         })         .catch((err) => {           reject(err);         });     });   }
    
 
 
 
 
    async ocr(imgPath, format = false) {     let res = await this.worker.recognize(imgPath);     let {       data: { text },     } = res;     if (format) text = text.replace(this.resultFormat, "");     return text;   }
    
 
 
 
 
 
 
 
 
 
    async findStr(     str,     imgPath,     x = 0,     y = 0,     width,     height,     colorRange = ["000000", "9f2e3f"]   ) {          let image = await loadImage(imgPath);
      width = width || image.width;     height = height || image.height;
           let canvas = createCanvas(image.width, image.height);     let ctx = canvas.getContext("2d");     ctx.drawImage(image, 0, 0);     let imageData = ctx.getImageData(x, y, width, height);     let croppedCanvas = createCanvas(width, height);     let croppedCtx = croppedCanvas.getContext("2d");     croppedCtx.putImageData(imageData, 0, 0);          let imageData2 = croppedCtx.getImageData(0, 0, width, height);     let data = imageData2.data;     let colorRangeMin = colorRange[0]         .match(/\w{2}/g)         .map((v) => parseInt(v, 16)),       colorRangeMax = colorRange[1].match(/\w{2}/g).map((v) => parseInt(v, 16));     for (let i = 0; i < data.length; i += 4) {       let red = data[i];       let green = data[i + 1];       let blue = data[i + 2];       if (         red >= colorRangeMin[0] &&         red <= colorRangeMax[0] &&         green >= colorRangeMin[1] &&         green <= colorRangeMax[1] &&         blue >= colorRangeMin[2] &&         blue <= colorRangeMax[2]       )         continue;       data[i] = 255;       data[i + 1] = 255;       data[i + 2] = 255;     }     croppedCtx.putImageData(imageData2, 0, 0);
           let buffer = croppedCanvas.toBuffer("image/png");     const tempImgPath = path.resolve(__dirname, "./temp.png");     fs.writeFileSync(tempImgPath, buffer);
           let res = await this.worker.recognize(tempImgPath);     let {       data: { lines },     } = res;
           fs.unlinkSync(tempImgPath);
           let line = lines.find((line, index) => {       return line.text.replace(this.resultFormat, "").indexOf(str) > -1;     });
      if (!line) {       return { x: 0, y: 0 };     }
           let word = line.words.find((word, index) => {       return word.text.replace(this.resultFormat, "").indexOf(str[0]) > -1;     });     if (!word) {       return { x: 0, y: 0 };     }     let point = {       x: x + word.bbox.x0,       y: y + word.bbox.y0,     };     return point;   } };
 
  |